Fourier-Laplace Transform and Isomonodromic Deformations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomonodromic deformations and Hurwitz spaces

Here we solve N × N Riemann-Hilbert (inverse monodromy) problems with all monodromy matrices having the structure of matrices of quasi-permutation (i.e. matrices which have only one non-zero element in each column and each row). Such RiemannHilbert problem may be associated to arbitrary Hurwitz space of algebraic curves L of genus g realized as N -sheeted covering over CP1, and allowes solution...

متن کامل

Algebraic and Geometric Isomonodromic Deformations

Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...

متن کامل

Elliptic Calogero-Moser Systems and Isomonodromic Deformations

“A`−1” stands for the A`−1 root system that underlies this model. Similarly, an elliptic Calogero-Moser system can be defined for each irreducible (but not necessary reduced) root system. Furthermore, for non-simply laced root systems, a kind of variants called “twisted model” and “extended twisted models” are also known. Those elliptic Calogero-Moser systems are known to possess an isospectral...

متن کامل

Fourier-laplace Transform of Flat Unitary Connections and Terp Structures

We show that if the Stokes matrix of a connection with a pole of order two and no ramification gives rise, when added to its adjoint, to a positive semi-definite Hermitian form, then the associated integrable twistor structure (or TERP structure, or non-commutative Hodge structure) is pure and polarized.

متن کامل

Schlesinger transformations for elliptic isomonodromic deformations

Schlesinger transformations are discrete monodromy preserving symmetry transformations of the classical Schlesinger system. Generalizing well-known results from the Riemann sphere we construct these transformations for isomonodromic deformations on genus one Riemann surfaces. Their action on the system’s tau-function is computed and we obtain an explicit expression for the ratio of the old and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2016

ISSN: 0532-8721

DOI: 10.1619/fesi.59.315